merge_data#
- geobricks.merge_data(data, *, extension=None, tag='', flatten=False, spatial_intersect=False, **kwargs)[source]#
This function merge all files inside a folder.
Parameters#
- data(list of) str or pathlib.Path, or variable (xarray.Dataset, xarray.DataArray, geopandas.GeoDataFrame or pandas.DataFrame)
Iterable of data to merge, or a path to a folder containing data to merge. In that case, the arguments
extensionandtagcan be passed.When datasets overlap, the last dataset has the highest priority.
- extension: str, optional
Only the files with this extension will be retrieved (when
datais a folder path).- tag: str, optional
Only the files containing this tag in their names will be retrieved (when
datais a folder path).- flattenbool, default False
If True, data will be flattent over the time axis.
- spatial_intersectbool, default False
If True: if datasets have different spatial extent, they will be merged according to the intersection of their spatial coordinates. If False, the datasets will be merged according to the union of their spatial coordinates.
Note that for all other dimensions (time, …), the datasets will always be merged according to the union of their indexes.
- **kwargs
Optional other arguments passed to
geo.load_any()(arguments forxarray.open_dataset,pandas.DataFrame.read_csv,pandas.DataFrame.to_csv,pandas.DataFrame.read_jsonorpandas.DataFrame.to_jsonfunction calls).May contain:
decode_cf
sep
encoding
force_ascii
…
>>> help(xarray.open_dataset) >>> help(pandas.read_csv) >>> help(pandas.to_csv) >>> ...
Returns#
- geopandas.GeoDataFrame, xarray.Dataset, pandas.DataFrame or numpy.array
Merged data is stored in a variable whose type is accordingly to the type of data:
all vector data will be loaded as a geopandas.GeoDataFrame
all raster data and netCDF will be loaded as a xarray.Dataset
other data will be loaded either as a pandas.DataFrame (CSV and JSON) or as a numpy.array (TIFF)